AsciiMath

Syntax

Most AsciiMath symbols attempt to mimic what they look like when presented in text. oo For ‘oo’. Many symbols can also be displayed using the TeX option, but the preceding backslash is not required.

operation symbol
Type TeX Alt Look
, ,
, ,
, C-DOT ,
, set ,
, star ,
, ,
, backslash
setminus
,
xx Times `xx`
, div ,
, many times ,
, rtimes ,
, bow tie ,
, CIRC ,
O+ oplus `O+`
Bull Sometimes `bull`
O! odot `O.`
Joint ‘yoga’
prod `prod`
, Nail ,
, Bigways ,
VV V `vv`
vvv bigvi ‘Www’
n Cap `nn`
nnn bigcap `nn`
ugh cup ‘Uw’
uuuu big cup `uuuu`
miscellaneous symbols
Type TeX Alt Look
2/3 frac ] : `2/3`
2^3 `2^3`
square x `square x`
root(3)(x) `root(3)(x)`
int here `int`
ointment `ointment`
Dell partial `Del`
grad nabla `graduate`
, at o’clock ,
hey/ empty set `O/`
ugh infty ‘Ugh’
Aleph `Aleph`
, so ,
, Because ,
, |LDOTS| ,
|cdots| `|cdots|`
vdots `vdots`
ddots `dots`
, ,
|quad| `|quad|`
, angle ,
frown ‘frown’
, triangle ,
diamond `diamond`
Social class `class`
, ifloor ,
, rfloor ,
, Roof ,
, Roof ,
CC `cc`
nn `nn`
QQ `qq`
RR `RR`
ZZ `ZZ`
“hello” text(hi) “hi”
relationship symbol
Type TeX Alt Look
, ,
, by ,
< lieutenant ,
, GT ,
, Take ,
, GE ,
MLT will put `MLT`
management GG `mgt`
, accurate ,
, preceq ,
, success ,
, success ,
In ‘In’
!In not inside `!in`
sub Subset `sub`
to writhe subset `super`
provinces Subsetek ‘Sube’
supe Supersetech `super`
, equivalent ,
, Congress ,
, About ,
prop Prompto `prop`
logical symbol
Type TeX Alt Look
And `and`
Or `or`
No negative `no`
, purport ,
If `if`
<=> iff `IFF`
Come for all `aa`
ee exists `ee`
, bot ,
tt top `TT`
, vdash ,
, model ,
grouping bracket
Type TeX Alt Look
, ,
, ,
[ `[`
] ,
, ,
, ,
, Langley ,
, Colour ,
, ,
, ,
{ : x ) `{: x )`
( `(
abs(x) `abs(x)`
floor(x) `floor(x)`
roof(x) `seal(x)`
standard(vecx) `norm(vecx)`
Arrow
Type TeX Alt Look
uar up arrow ‘uar’
Fear down arrow ‘fear’
rar right arrow ‘rar’
, To ,
, right arrow tail ,
, double headed right arrow ,
, two heads right arrow tail ,
, mapsto ,
saliva on the left ‘saliva’
hair left right arrow ‘hair’
rArr right arrow `rArr`
LAR on the left `lArr`
Harr left right arrow ‘Heyrr’
accent
Type TeX Alt Look
hat x `Hat X`
bar x overline x `bar x`
ul x underline x `ul x`
vec x `wake x`
tilde x `Tilde X`
dot x `dot x`
didot x `didot x`
overset(x)(=) overset(x)(=) `overset(x)(=)`
underset(x)(=) `underset(x)(=)`
Ubres(1+2) underbrace(1+2) `ubrace(1+2)`
Obres(1+2) overbrace(1+2) `Obrace(1+2)`
overarch(ab) Overparen(AB) `overarch(ab)`
color(red)(x) `color(red)(x)`
cancel(x) `cancel(x)`
Greek letters
Type Look Type Look
Alpha `Alpha`
beta `beta`
gamma `gamma` gamma `gamma`
delta `Delta` delta `Delta`
epsilon `Epsilon`
varepsilon `Verepsilon`
zeta `zeta`
brick `eta`
theta `theta` theta `theta`
vartheta `varteta`
just `iota`
cotton `kappa`
lambda `lambda` lambda `lambda`
Mu `mu`
New `nu`
Xi `xi` Xi `she`
exemplary `p` exemplary `pie`
Cry ‘cry’
sigma `Sigma` sigma `Sigma`
Tau ‘Tau’
upsilon `upsilon`
PHI `fee` PHI `fee`
Varfi ‘Warfi’
Chi `chi`
Sai `sai` Sai `sai`
Omega `omega` Omega `omega`
font order
Type TeX Alt Look
BB “AABBCC” mathbf “AABBCC” `BB “AABBCC”`
BBB “AABBCC” MathBB “AABBCC” `BBB “AABBCC”`
CC “AABBCC” Mathematics “AaBbCc” `CC “AABBCC”`
TT “AABBCC” Math “AABBCC” `tt “AaBbCc”`
fr “AaBbCc” MathFreak “AABBCC” `fr “AaBbCc”`
SF “AABBCC” Mathematics “AaBbCc” `SF “AABBCC”`

standard work

sin, cos, tan, sec, csc, cot, arcsin, arccos, arctan, singh, cosh, tan, sech, csh, coth, exp, log, ln, det, dim, mod, gcd, lcm, lab, glb, min, max, f, g.

special cases

Matrix: [[a,b],[c,d]] `yields to[[a,b],[c,d],

Column vectors: ((a),(b)) `((a),(b))` is obtained

augmented matrix: [[a,b,|,c],[d,e,|,f]] `yields to[[a,b,|,c],[d,e,|,f],

Matrix can be used for layout:
other left brackets
r ::= )
yields `: `

Complex subscript: lim_(N->oo) sum_(i=0)^N `lim_(N->oo) sum_(i=0)^N` is obtained

The subscript must come before the superscript:
int_0^1 f(x)dx `int_0^1 f(x)dx` is obtained

Derivatives: f'(x) = dy/dx `f'(x) = dy/dx` we get
For variables other than x,y,z, or t you will need grouping symbols:
(dq)/(dp) For `(dq)/(dp)`

Overbraces and underbraces:
ubrace(1+2+3+4)_("4 terms") Produces `ubrace(1+2+3+4)_(“4 terms”)`.
obrace(1+2+3+4)^("4 terms") `Obrace(1+2+3+4)^(‘4 terms’)` is obtained.

Note: Always try to surround > And
< Characters with spaces so that the HTML parser doesn’t confuse it with opening or closing tags!

grammar

Here is a definition of the grammar used to parse AsciiMath expressions. In the Backus–Naur form given below, the letter on the left
::= Represents a range of symbols that can be one of the possible sequences of symbols listed at right. vertical bar | differentiates the options.

v ::= [A-Za-z] | greek letters | numbers | other constant symbols
u ::= sqrt | text | bb | other unary symbols for font commands
b ::= frac | root | stackrel | other binary symbols
l ::= ( | [ | { | (: | {: | other left brackets
r ::= ) | ] | } | :) | :} | other right brackets
S ::= v | lEr | uS | bSS             Simple expression
I ::= S_S | S^S | S_S^S | S          Intermediate expression
E ::= IE | I/I                       Expression



Leave a Comment